🏂diffusion model(二):DDIM技术小结 (denoising diffusion implicit model)

去噪扩散概率模型 (DDPM6) 在没有对抗训练的情况下实现了高质量的图像生成,但其采样过程依赖马尔可夫假设,需要较多的时间步才能得到较好的生成效果。本文提出的DDIM(denoising diffusion implicit models 5)是更有效的迭代隐式概率模型,其训练过程与 DDPM 相同,但相比DDPM,采样过程快 10 到 50 倍。

LoRA: 微调大模型的一种轻量级方法

常见的预训练模型有非常低的本征维度。通俗的讲就是说存在一种低维重参数化方式,其在微调时与全参数空间一样有效。受此启发LoRA相对原本架构它增加了一个旁路,使输入向较小的子空间进行随机投影。微调过程时仅更新旁路的较为轻量的权重A,B,取代更新原有权重W。