Lazy loaded imageMatryoshka Representation Learning (俄罗斯套娃表征学习)技术小结

我们平时做retrieval相关的工作,很多时候根据业务场景和计算资源需要对向量进行降维。受限开发周期,我们往往不会通过重新训练特征提取模型来调整向量维度,而是用PCA等方法来实现。但是当降维的scale较大时,PCA等方法的效果较差。Matryoshka Representation Learning (MRL)这篇paper介绍了一个很简单但有效的方法能实现一次训练,获取不同维度的表征提取。下面来看它具体是怎么做的吧。
莫叶何竹🍀
莫叶何竹🍀
非淡泊无以明志,非宁静无以致远
最新发布
表格结构还原——SLANet
2025-2-27
KV-Cache技术小结(MHA,GQA,MQA,MLA)
2025-2-24
diffusion model(十九) :SDE视角下的扩散模型
2024-12-31
🔥Lit: 进一步提升多模态模型Zero-Shot迁移学习的能力
2024-11-22
RNN并行化——《Were RNNs All We Needed?》论文解读
2024-11-21
Supervised Contrastive Learning
2024-10-12